Advertisement

Evolution of Risk Calculators and the Dawn of Artificial Intelligence in Predicting Patient Complications

Published:November 02, 2020DOI:https://doi.org/10.1016/j.suc.2020.08.012

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Surgical Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Healy J.M.
        • Davis K.A.
        • Pei K.Y.
        Comparison of internal medicine and general surgery residents' assessments of risk of postsurgical complications in surgically complex patients.
        JAMA Surg. 2018; 153: 203-207
        • McDermott R.
        Medical decision making: lessons from psychology.
        Urol Oncol. 2008; 26: 665-668
        • Sjoberg L.
        Factors in risk perception.
        Risk Anal. 2000; 20: 1-11
        • Chand M.
        • Armstrong T.
        • Britton G.
        • et al.
        How and why do we measure surgical risk?.
        J R Soc Med. 2007; 100: 508-512
        • Fleming S.T.
        • Hicks L.L.
        • Bailey R.C.
        Interpreting the health care financing administration's mortality statistics.
        Med Care. 1995; 33: 186-201
        • Kouchoukos N.T.
        • Ebert P.A.
        • Grover F.L.
        • et al.
        Report of the Ad Hoc Committee on risk factors for coronary artery bypass surgery.
        Ann Thorac Surg. 1988; 45: 348-349
        • Fuchshuber P.R.
        • Greif W.
        • Tidwell C.R.
        • et al.
        The power of the National Surgical Quality Improvement Program--achieving a zero pneumonia rate in general surgery patients.
        Perm J. 2012; 16: 39-45
        • Massarweh N.N.
        • Kaji A.H.
        • Itani K.M.F.
        Practical guide to surgical data sets: Veterans Affairs Surgical Quality Improvement Program (VASQIP).
        JAMA Surg. 2018; 153: 768-769
        • Cobb A.N.
        • Benjamin A.J.
        • Huang E.S.
        • et al.
        Big data: more than big data sets.
        Surgery. 2018; 164: 640-642
        • Mansmann U.
        • Rieger A.
        • Strahwald B.
        • et al.
        Risk calculators-methods, development, implementation, and validation.
        Int J Colorectal Dis. 2016; 31: 1111-1116
        • Edwards A.L.
        Multiple regression and the analysis of variance and covariance. Multiple regression and the analysis of variance and covariance.
        W H Freeman/Times Books/Henry Holt & Co, New York1985: xv (221)
        • Abouleish A.E.
        • Leib M.L.
        • Cohen N.H.
        ASA provides examples to each ASA physical status class.
        ASA Newsl. 2015; 79: 38-49
        • Owens W.D.
        • Felts J.A.
        • Spitznagel Jr., E.L.
        ASA physical status classifications: a study of consistency of ratings.
        Anesthesiology. 1978; 49: 239-243
        • Wolters U.
        • Wolf T.
        • Stützer H.
        • et al.
        ASA classification and perioperative variables as predictors of postoperative outcome.
        Br J Anaesth. 1996; 77: 217-222
        • Scott S.
        • Lund J.N.
        • Gold S.
        • et al.
        An evaluation of POSSUM and P-POSSUM scoring in predicting post-operative mortality in a level 1 critical care setting.
        BMC Anesthesiol. 2014; 14: 104
        • Knaus W.A.
        • Zimmerman J.E.
        • Wagner D.P.
        • et al.
        APACHE-acute physiology and chronic health evaluation: a physiologically based classification system.
        Crit Care Med. 1981; 9: 591-597
        • Knaus W.A.
        • Draper E.A.
        • Wagner D.P.
        • et al.
        APACHE II: a severity of disease classification system.
        Crit Care Med. 1985; 13: 818-829
        • Oliver C.M.
        • Walker E.
        • Giannaris S.
        • et al.
        Risk assessment tools validated for patients undergoing emergency laparotomy: a systematic review.
        Br J Anaesth. 2015; 115: 849-860
        • Copeland G.P.
        • Jones D.
        • Walters M.
        POSSUM: a scoring system for surgical audit.
        Br J Surg. 1991; 78: 355-360
        • Prytherch D.R.
        • Whiteley M.S.
        • Higgins B.
        • et al.
        POSSUM and Portsmouth POSSUM for predicting mortality. Physiological and Operative Severity Score for the enUmeration of Mortality and morbidity.
        Br J Surg. 1998; 85: 1217-1220
        • Carvalho E.C.M.E.
        • DE-Queiroz F.L.
        • Martins-DA-Costa B.X.
        • et al.
        The applicability of POSSUM and P-POSSUM scores as predictors of morbidity and mortality in colorectal surgery.
        Rev Col Bras Cir. 2018; 45: e1347
        • Bilimoria K.Y.
        • Liu Y.
        • Paruch J.L.
        • et al.
        Development and evaluation of the universal ACS NSQIP surgical risk calculator: a decision aid and informed consent tool for patients and surgeons.
        J Am Coll Surg. 2013; 217: 833-842.e1-3
        • Edwards F.H.
        • Clark R.E.
        • Schwartz M.
        Coronary artery bypass grafting: The Society of Thoracic Surgeons National Database experience.
        Ann Thorac Surg. 1994; 57: 12-19
        • Shahian D.M.
        • Jacobs J.P.
        • Badhwar V.
        • et al.
        The Society of Thoracic Surgeons 2018 adult cardiac surgery risk models: part 1-background, design considerations, and model development.
        Ann Thorac Surg. 2018; 105: 1411-1418
        • Moonesinghe S.R.
        • Bashford T.
        • Wagstaff D.
        Implementing risk calculators: time for the Trojan Horse?.
        Br J Anaesth. 2018; 121: 1192-1196
        • Liu Y.
        • Cohen M.E.
        • Hall B.L.
        • et al.
        Evaluation and enhancement of calibration in the American College of Surgeons NSQIP Surgical Risk Calculator.
        J Am Coll Surg. 2016; 223: 231-239
        • Sacks G.D.
        • Dawes A.J.
        • Ettner S.L.
        • et al.
        Impact of a risk calculator on risk perception and surgical decision making: a randomized trial.
        Ann Surg. 2016; 264: 889-895
        • Leeds I.L.
        • Rosenblum A.J.
        • Wise P.E.
        • et al.
        Eye of the beholder: risk calculators and barriers to adoption in surgical trainees.
        Surgery. 2018; 164: 1117-1123
        • Krittanawong C.
        • Zhang H.
        • Wang Z.
        • et al.
        Artificial intelligence in precision cardiovascular medicine.
        J Am Coll Cardiol. 2017; 69: 2657-2664
        • Cook N.R.
        • Ridker P.M.
        Calibration of the pooled cohort equations for atherosclerotic cardiovascular disease: an update.
        Ann Intern Med. 2016; 165: 786-794
        • Bishop C.M.
        Pattern recognition and machine learning (information science and statistics).
        Springer-Verlag, New York2006
        • Ciompi F.
        • Chung K.
        • van Riel S.J.
        • et al.
        Towards automatic pulmonary nodule management in lung cancer screening with deep learning.
        Sci Rep. 2017; 7: 46479
        • Lip G.Y.
        • Nieuwlaat R.
        • Pisters R.
        • et al.
        Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the Euro Heart Survey on Atrial Fibrillation.
        Chest. 2010; 137: 263-272
        • Deo R.C.
        Machine learning in medicine.
        Circulation. 2015; 132: 1920-1930
        • Lo-Ciganic W.H.
        • Huang J.L.
        • Zhang H.H.
        • et al.
        Evaluation of machine-learning algorithms for predicting opioid overdose risk among Medicare beneficiaries with opioid prescriptions.
        JAMA Netw Open. 2019; 2: e190968
        • Hsich E.
        • Gorodeski E.Z.
        • Blackstone E.H.
        • et al.
        Identifying important risk factors for survival in patient with systolic heart failure using random survival forests.
        Circ Cardiovasc Qual Outcomes. 2011; 4: 39-45
        • Chirikov V.V.
        • Shaya F.T.
        • Onukwugha E.
        • et al.
        Tree-based claims algorithm for measuring pretreatment quality of care in Medicare disabled hepatitis C patients.
        Med Care. 2017; 55: e104-e112
        • Thottakkara P.
        • Ozrazgat-Baslanti T.
        • Hupf B.B.
        • et al.
        Application of machine learning techniques to high-dimensional clinical data to forecast postoperative complications.
        PLoS One. 2016; 11: e0155705
        • Karadaghy O.A.
        • Shew M.
        • New J.
        • et al.
        Development and assessment of a machine learning model to help predict survival among patients with oral squamous cell carcinoma.
        JAMA Otolaryngol Head Neck Surg. 2019; 145: 1115-1120
        • Bihorac A.
        • Ozrazgat-Baslanti T.
        • Ebadi A.
        • et al.
        MySurgeryRisk: development and validation of a machine-learning risk algorithm for major complications and death after surgery.
        Ann Surg. 2019; 269: 652-662
        • Bertsimas D.
        • Dunn J.
        • Velmahos G.C.
        • et al.
        Surgical risk is not linear: derivation and validation of a novel, user-friendly, and machine-learning-based predictive OpTimal Trees in Emergency Surgery Risk (POTTER) Calculator.
        Ann Surg. 2018; 268: 574-583