Advertisement

Workup and Management of Thyroid Nodules

Published:March 05, 2022DOI:https://doi.org/10.1016/j.suc.2021.12.006

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Surgical Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jin J.
        • McHenry C.R.
        Thyroid incidentaloma.
        Best Pract Res Clin Endocrinol Metab. 2012; 26: 83-96https://doi.org/10.1016/j.beem.2011.06.004
        • Mortensen J.D.
        • Woolner L.B.
        • Bennett W.A.
        Gross and microscopic findings in clinically normal thyroid glands.
        J Clin Endocrinol Metab. 1955; 15: 1270-1280https://doi.org/10.1210/jcem-15-10-1270
        • Guth S.
        • Theune U.
        • Aberle J.
        • et al.
        Very high prevalence of thyroid nodules detected by high frequency (13 MHz) ultrasound examination.
        Eur J Clin Invest. 2009; 39: 699-706https://doi.org/10.1111/j.1365-2362.2009.02162.x
        • Ahmed S.
        • Horton K.M.
        • Jeffrey Jr., R.B.
        • et al.
        Incidental thyroid nodules on chest CT: review of the literature and management suggestions.
        AJR Am J Roentgenol. 2010; 195: 1066-1071https://doi.org/10.2214/AJR.10.4506
        • Rad M.P.
        • Zakavi S.R.
        • Layegh P.
        • et al.
        Incidental thyroid abnormalities on carotid color doppler ultrasound: frequency and clinical significance.
        J Med Ultrasound. 2015; 23 (Available at:): 25-28
        • Yoon D.Y.
        • Chang S.K.
        • Choi C.S.
        • et al.
        The prevalence and significance of incidental thyroid nodules identified on computed tomography.
        J Comput Assist Tomogr. 2008; 32: 810-815https://doi.org/10.1097/RCT.0b013e318157fd38
        • Cohen M.S.
        • Arslan N.
        • Dehdashti F.
        • et al.
        Risk of malignancy in thyroid incidentalomas identified by fluorodeoxyglucose-positron emission tomography.
        Surgery. 2001; 130: 941-946
        • Desser T.S.
        • Kamaya A.
        Ultrasound of thyroid nodules.
        Neuroimaging Clin N Am. 2008; 18 (vii): 463-478https://doi.org/10.1016/j.nic.2008.03.005
        • Davies L.
        • Welch H.G.
        Current thyroid cancer trends in the United States.
        JAMA Otolaryngol Head Neck Surg. 2014; 140: 317-322https://doi.org/10.1001/jamaoto.2014.1
        • Hoang J.K.
        • Nguyen X.V.
        • Davies L.
        Overdiagnosis of thyroid cancer: answers to five key questions.
        Acad Radiol. 2015; 22: 1024-1029
        • Kovatch K.J.
        • Hoban C.W.
        • Shuman A.G.
        Thyroid cancer surgery guidelines in an era of de-escalation.
        Eur J Surg Oncol. 2018; 44: 297-306
        • Bibbins-Domingo K.
        • Grossman D.C.
        • Curry S.J.
        • et al.
        • US Preventive Services Task Force
        Screening for thyroid cancer: US preventive services task force recommendation statement.
        JAMA. 2017; 317: 1882-1887https://doi.org/10.1001/jama.2017.4011
        • Kim B.W.
        • Yousman W.
        • Wong W.X.
        • et al.
        Less is more: comparing the 2015 and 2009 american thyroid association guidelines for thyroid nodules and cancer.
        Thyroid. 2016; 26: 759-764https://doi.org/10.1089/thy.2016.0068
        • Haugen B.R.
        • Alexander E.K.
        • Bible K.C.
        • et al.
        2015 american thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer.
        Thyroid. 2016; 26: 1-133https://doi.org/10.1089/thy.2015.0020
        • Ramundo V.
        • Sponziello M.
        • Falcone R.
        • et al.
        Low-risk papillary thyroid microcarcinoma: optimal management toward a more conservative approach.
        J Surg Oncol. 2020; 121: 958-963https://doi.org/10.1002/jso.25848
        • Welker M.J.
        • Orlov D.
        Thyroid nodules.
        Am Fam Physician. 2003; 67: 559-566
        • Popoveniuc G.
        • Jonklaas J.
        Thyroid nodules.
        Med Clin North Am. 2012; 96: 329-349https://doi.org/10.1016/j.mcna.2012.02.002
        • Haymart M.R.
        • Repplinger D.J.
        • Leverson G.E.
        • et al.
        Higher serum thyroid stimulating hormone level in thyroid nodule patients is associated with greater risks of differentiated thyroid cancer and advanced tumor stage.
        J Clin Endocrinol Metab. 2008; 93: 809-814
        • Lau L.W.
        • Ghaznavi S.
        • Frolkis A.D.
        • et al.
        Malignancy risk of hyperfunctioning thyroid nodules compared with non-toxic nodules: systematic review and a meta-analysis.
        Thyroid Res. 2021; 14: 3https://doi.org/10.1186/s13044-021-00094-1
        • Gharib H.
        • Papini E.
        Thyroid nodules: clinical importance, assessment, and treatment.
        Endocrinol Metab Clin North Am. 2007; 36 (vi): 707-735
        • Grani G.
        • Sponziello M.
        • Pecce V.
        • et al.
        Contemporary thyroid nodule evaluation and management.
        J Clin Endocrinol Metab. 2020; 105: 2869-2883
        • Nachiappan A.C.
        • Metwalli Z.A.
        • Hailey B.S.
        • et al.
        The thyroid: review of imaging features and biopsy techniques with radiologic-pathologic correlation.
        Radiographics. 2014; 34: 276-293https://doi.org/10.1148/rg.342135067
        • Shetty S.K.
        • Maher M.M.
        • Hahn P.F.
        • et al.
        Significance of incidental thyroid lesions detected on CT: correlation among CT, sonography, and pathology.
        AJR Am J Roentgenol. 2006; 187: 1349-1356
        • Hambly N.M.
        • Gonen M.
        • Gerst S.R.
        • et al.
        Implementation of evidence-based guidelines for thyroid nodule biopsy: a model for establishment of practice standards.
        AJR Am J Roentgenol. 2011; 196: 655-660https://doi.org/10.2214/AJR.10.4577
        • Tessler F.N.
        • Middleton W.D.
        • Grant E.G.
        • et al.
        ACR thyroid imaging, reporting and data system (TI-RADS): white paper of the ACR TI-RADS committee.
        J Am Coll Radiol. 2017; 14: 587-595
        • Salmaslioğlu A.
        • Erbil Y.
        • Dural C.
        • et al.
        Predictive value of sonographic features in preoperative evaluation of malignant thyroid nodules in a multinodular goiter.
        World J Surg. 2008; 32: 1948-1954https://doi.org/10.1007/s00268-008-9600-2
        • Kwak J.Y.
        • Han K.H.
        • Yoon J.H.
        • et al.
        Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk.
        Radiology. 2011; 260: 892-899https://doi.org/10.1148/radiol.11110206
        • Brito J.P.
        • Gionfriddo M.R.
        • Al Nofal A.
        • et al.
        The accuracy of thyroid nodule ultrasound to predict thyroid cancer: systematic review and meta-analysis.
        J Clin Endocrinol Metab. 2014; 99: 1253-1263https://doi.org/10.1210/jc.2013-2928
        • Kim J.Y.
        • Jung S.L.
        • Kim M.K.
        • et al.
        Differentiation of benign and malignant thyroid nodules based on the proportion of sponge-like areas on ultrasonography: Imaging-pathologic correlation.
        Ultrasonography. 2015; 34: 304-311https://doi.org/10.14366/usg.15016
        • Redman R.
        • Zalaznick H.
        • Mazzaferri E.L.
        • et al.
        The impact of assessing specimen adequacy and number of needle passes for fine-needle aspiration biopsy of thyroid nodules.
        Thyroid. 2006; 16: 55-60https://doi.org/10.1089/thy.2006.16.55
        • Robitschek J.
        • Straub M.
        • Wirtz E.
        • et al.
        Diagnostic efficacy of surgeon-performed ultrasound-guided fine needle aspiration: a randomized controlled trial.
        Otolaryngol Head Neck Surg. 2010; 142: 306-309https://doi.org/10.1016/j.otohns.2009.11.011
        • Gharib H.
        • Goellner J.R.
        Fine-needle aspiration biopsy of the thyroid: an appraisal.
        Ann Intern Med. 1993; 118: 282-289https://doi.org/10.7326/0003-4819-118-4-199302150-00007
        • de Koster E.J.
        • Kist J.W.
        • Vriens M.R.
        • et al.
        Thyroid ultrasound-guided fine-needle aspiration: the positive influence of on-site adequacy assessment and number of needle passes on diagnostic cytology rate.
        Acta Cytol. 2016; 60: 39-45https://doi.org/10.1159/000444917
        • Polyzos S.A.
        • Anastasilakis A.D.
        Clinical complications following thyroid fine-needle biopsy: a systematic review.
        Clin Endocrinol (Oxf). 2009; 71: 157-165https://doi.org/10.1111/j.1365-2265.2009.03522.x
        • Polyzos S.A.
        • Anastasilakis A.D.
        A systematic review of cases reporting needle tract seeding following thyroid fine needle biopsy.
        World J Surg. 2010; 34: 844-851https://doi.org/10.1007/s00268-009-0362-2
        • Denham S.L.
        • Ismail A.
        • Bolus D.N.
        • et al.
        Effect of anticoagulation medication on the thyroid fine-needle aspiration pathologic diagnostic sufficiency rate.
        J Ultrasound Med. 2016; 35: 43-48https://doi.org/10.7863/ultra.15.03044
        • Khadra H.
        • Kholmatov R.
        • Monlezun D.
        • et al.
        Do anticoagulation medications increase the risk of haematoma in ultrasound-guided fine needle aspiration of thyroid lesions?.
        Cytopathology. 2018; 29: 565-568https://doi.org/10.1111/cyt.12608
        • Lyle M.A.
        • Dean D.S.
        Ultrasound-guided fine-needle aspiration biopsy of thyroid nodules in patients taking novel oral anticoagulants.
        Thyroid. 2015; 25: 373-376https://doi.org/10.1089/thy.2014.0307
        • Bongiovanni M.
        • Spitale A.
        • Faquin W.C.
        • et al.
        The bethesda system for reporting thyroid cytopathology: a meta-analysis.
        Acta Cytol. 2012; 56: 333-339https://doi.org/10.1159/000339959
        • Nikiforov Y.E.
        • Seethala R.R.
        • Tallini G.
        • et al.
        Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: a paradigm shift to reduce overtreatment of indolent tumors.
        JAMA Oncol. 2016; 2: 1023-1029https://doi.org/10.1001/jamaoncol.2016.0386
        • Geramizadeh B.
        • Maleki Z.
        Non-invasive follicular thyroid neoplasm with papillary-like nuclearfeatures (NIFTP): a review and update.
        Endocrine. 2019; 64: 433-440https://doi.org/10.1007/s12020-019-01887-z
        • Cibas E.S.
        • Ali S.Z.
        The 2017 bethesda system for reporting thyroid cytopathology.
        Thyroid. 2017; 27: 1341-1346https://doi.org/10.1089/thy.2017.0500
        • Saieg M.A.
        • Barbosa B.
        • Nishi J.
        • et al.
        The impact of repeat FNA in non-diagnostic and indeterminate thyroid nodules: a 5-year single-centre experience.
        Cytopathology. 2018; 29: 196-200https://doi.org/10.1111/cyt.12508
        • Ho A.S.
        • Sarti E.E.
        • Jain K.S.
        • et al.
        Malignancy rate in thyroid nodules classified as bethesda category III (AUS/FLUS).
        Thyroid. 2014; 24: 832-839https://doi.org/10.1089/thy.2013.0317
        • Brito J.P.
        • Ito Y.
        • Miyauchi A.
        • et al.
        A clinical framework to facilitate risk stratification when considering an active surveillance alternative to immediate biopsy and surgery in papillary microcarcinoma.
        Thyroid. 2016; 26: 144-149https://doi.org/10.1089/thy.2015.0178
        • Mazzaferri E.L.
        Management of low-risk differentiated thyroid cancer.
        Endocr Pract. 2007; 13: 498-512
        • Fradin J.M.
        ACR TI-RADS: an advance in the management of thyroid nodules or pandora's box of surveillance?.
        J Clin Ultrasound. 2020; 48: 3-6https://doi.org/10.1002/jcu.22772
        • Jensen C.B.
        • Saucke M.C.
        • Francis D.O.
        • et al.
        From overdiagnosis to overtreatment of low-risk thyroid cancer: a thematic analysis of attitudes and beliefs of endocrinologists, surgeons, and patients.
        Thyroid. 2020; 30: 696-703https://doi.org/10.1089/thy.2019.0587
        • Ajmal S.
        • Rapoport S.
        • Ramirez Batlle H.
        • et al.
        The natural history of the benign thyroid nodule: what is the appropriate follow-up strategy?.
        J Am Coll Surg. 2015; 220: 987-992
        • Lee S.
        • Skelton T.S.
        • Zheng F.
        • et al.
        The biopsy-proven benign thyroid nodule: is long-term follow-up necessary?.
        J Am Coll Surg. 2013; 217: 81-89
        • Alexander E.K.
        • Kennedy G.C.
        • Baloch Z.W.
        • et al.
        Preoperative diagnosis of benign thyroid nodules with indeterminate cytology.
        N Engl J Med. 2012; 367: 705-715https://doi.org/10.1056/NEJMoa1203208
        • Endo M.
        • Nabhan F.
        • Porter K.
        • et al.
        Afirma gene sequencing classifier compared with gene expression classifier in indeterminate thyroid nodules.
        Thyroid. 2019; 29: 1115-1124https://doi.org/10.1089/thy.2018.0733
        • Steward D.L.
        • Carty S.E.
        • Sippel R.S.
        • et al.
        Performance of a multigene genomic classifier in thyroid nodules with indeterminate cytology: a prospective blinded multicenter study.
        JAMA Oncol. 2019; 5: 204-212https://doi.org/10.1001/jamaoncol.2018.4616
        • Labourier E.
        • Shifrin A.
        • Busseniers A.E.
        • et al.
        Molecular testing for miRNA, mRNA, and DNA on fine-needle aspiration improves the preoperative diagnosis of thyroid nodules with indeterminate cytology.
        J Clin Endocrinol Metab. 2015; 100: 2743-2750https://doi.org/10.1210/jc.2015-1158
        • Al-Qurayshi Z.
        • Deniwar A.
        • Thethi T.
        • et al.
        Association of malignancy prevalence with test properties and performance of the gene expression classifier in indeterminate thyroid nodules.
        JAMA Otolaryngol Head Neck Surg. 2017; 143: 403-408https://doi.org/10.1001/jamaoto.2016.3526
        • Baca S.C.
        • Wong K.S.
        • Strickland K.C.
        • et al.
        Qualifiers of atypia in the cytologic diagnosis of thyroid nodules are associated with different afirma gene expression classifier results and clinical outcomes.
        Cancer Cytopathol. 2017; 125: 313-322https://doi.org/10.1002/cncy.21827
        • Marcadis A.R.
        • Valderrabano P.
        • Ho A.S.
        • et al.
        Interinstitutional variation in predictive value of the ThyroSeq v2 genomic classifier for cytologically indeterminate thyroid nodules.
        Surgery. 2019; 165: 17-24
        • Marti J.L.
        • Avadhani V.
        • Donatelli L.A.
        • et al.
        Wide inter-institutional variation in performance of a molecular classifier for indeterminate thyroid nodules.
        Ann Surg Oncol. 2015; 22: 3996-4001https://doi.org/10.1245/s10434-015-4486-3
        • Taye A.
        • Gurciullo D.
        • Miles B.A.
        • et al.
        Clinical performance of a next-generation sequencing assay (ThyroSeq v2) in the evaluation of indeterminate thyroid nodules.
        Surgery. 2018; 163: 97-103
        • Valderrabano P.
        • Hallanger-Johnson J.E.
        • Thapa R.
        • et al.
        Comparison of postmarketing findings vs the initial clinical validation findings of a thyroid nodule gene expression classifier: a systematic review and meta-analysis.
        JAMA Otolaryngol Head Neck Surg. 2019; 145: 783-792https://doi.org/10.1001/jamaoto.2019.1449
        • Samulski T.D.
        • LiVolsi V.A.
        • Wong L.Q.
        • et al.
        Usage trends and performance characteristics of a "gene expression classifier" in the management of thyroid nodules: an institutional experience.
        Diagn Cytopathol. 2016; 44: 867-873https://doi.org/10.1002/dc.23559
        • Khan T.M.
        • Zeiger M.A.
        Thyroid nodule molecular testing: is it ready for prime time?.
        Front Endocrinol (Lausanne). 2020; 11: 590128https://doi.org/10.3389/fendo.2020.590128
        • Singh Ospina N.
        • Iñiguez-Ariza N.M.
        • Castro M.R.
        Thyroid nodules: diagnostic evaluation based on thyroid cancer risk assessment.
        BMJ. 2020; 368: l6670https://doi.org/10.1136/bmj.l6670
        • Sdano M.T.
        • Falciglia M.
        • Welge J.A.
        • et al.
        Efficacy of thyroid hormone suppression for benign thyroid nodules: meta-analysis of randomized trials.
        Otolaryngol Head Neck Surg. 2005; 133: 391-396
        • Nygaard B.
        • Hegedüs L.
        • Gervil M.
        • et al.
        Radioiodine treatment of multinodular non-toxic goitre.
        BMJ. 1993; 307: 828-832https://doi.org/10.1136/bmj.307.6908.828
        • Roque C.
        • Santos F.S.
        • Pilli T.
        • et al.
        Long-term effects of radioiodine in toxic multinodular goiter: thyroid volume, function, and autoimmunity.
        J Clin Endocrinol Metab. 2020; 105: dgaa214https://doi.org/10.1210/clinem/dgaa214
        • Zingrillo M.
        • Torlontano M.
        • Ghiggi M.R.
        • et al.
        Radioiodine and percutaneous ethanol injection in the treatment of large toxic thyroid nodule: a long-term study.
        Thyroid. 2000; 10: 985-989https://doi.org/10.1089/thy.2000.10.985
        • Haigh P.I.
        • Urbach D.R.
        • Rotstein L.E.
        Extent of thyroidectomy is not a major determinant of survival in low- or high-risk papillary thyroid cancer.
        Ann Surg Oncol. 2005; 12: 81-89https://doi.org/10.1007/s10434-004-1165-1
        • Adam M.A.
        • Pura J.
        • Gu L.
        • et al.
        Extent of surgery for papillary thyroid cancer is not associated with survival: an analysis of 61,775 patients.
        Ann Surg. 2014; 260: 601-607https://doi.org/10.1097/SLA.0000000000000925
        • Nixon I.J.
        • Ganly I.
        • Patel S.G.
        • et al.
        Thyroid lobectomy for treatment of well differentiated intrathyroid malignancy.
        Surgery. 2012; 151: 571-579https://doi.org/10.1016/j.surg.2011.08.016
        • Francis D.O.
        • Pearce E.C.
        • Ni S.
        • et al.
        Epidemiology of vocal fold paralyses after total thyroidectomy for well-differentiated thyroid cancer in a medicare population.
        Otolaryngol Head Neck Surg. 2014; 150: 548-557https://doi.org/10.1177/0194599814521381
        • Aluffi P.
        • Policarpo M.
        • Cherovac C.
        • et al.
        Post-thyroidectomy superior laryngeal nerve injury.
        Eur Arch Otorhinolaryngol. 2001; 258: 451-454https://doi.org/10.1007/s004050100382
        • Barczyński M.
        • Randolph G.W.
        • Cernea C.R.
        • et al.
        External branch of the superior laryngeal nerve monitoring during thyroid and parathyroid surgery: international neural monitoring study group standards guideline statement.
        Laryngoscope. 2013; 123: 1https://doi.org/10.1002/lary.24301
        • Cernea C.R.
        • Ferraz A.R.
        • Furlani J.
        • et al.
        Identification of the external branch of the superior laryngeal nerve during thyroidectomy.
        Am J Surg. 1992; 164: 634-639
        • Jansson S.
        • Tisell L.E.
        • Hagne I.
        • et al.
        Partial superior laryngeal nerve (SLN) lesions before and after thyroid surgery.
        World J Surg. 1988; 12: 522-527https://doi.org/10.1007/BF01655439
        • Teitelbaum B.J.
        • Wenig B.L.
        Superior laryngeal nerve injury from thyroid surgery.
        Head Neck. 1995; 17: 36-40https://doi.org/10.1002/hed.2880170108
        • Annebäck M.
        • Hedberg J.
        • Almquist M.
        • et al.
        Risk of permanent hypoparathyroidism after total thyroidectomy for benign disease: a nationwide population-based cohort study from sweden.
        Ann Surg. 2020; https://doi.org/10.1097/SLA.0000000000003800
        • Cho J.N.
        • Park W.S.
        • Min S.Y.
        Predictors and risk factors of hypoparathyroidism after total thyroidectomy.
        Int J Surg. 2016; 34: 47-52
        • Ponce de León-Ballesteros G.
        • Velázquez-Fernández D.
        • Hernández-Calderón F.J.
        • et al.
        Hypoparathyroidism after total thyroidectomy: importance of the intraoperative management of the parathyroid glands.
        World J Surg. 2019; 43: 1728-1735https://doi.org/10.1007/s00268-019-04987-z
        • Rosato L.
        • Avenia N.
        • Bernante P.
        • et al.
        Complications of thyroid surgery: analysis of a multicentric study on 14,934 patients operated on in italy over 5 years.
        World J Surg. 2004; 28: 271-276https://doi.org/10.1007/s00268-003-6903-1
        • Papini E.
        • Monpeyssen H.
        • Frasoldati A.
        • et al.
        2020 european thyroid association clinical practice guideline for the use of image-guided ablation in benign thyroid nodules.
        Eur Thyroid J. 2020; 9: 172-185https://doi.org/10.1159/000508484
        • Ha E.J.
        • Baek J.H.
        • Kim K.W.
        • et al.
        Comparative efficacy of radiofrequency and laser ablation for the treatment of benign thyroid nodules: systematic review including traditional pooling and bayesian network meta-analysis.
        J Clin Endocrinol Metab. 2015; 100: 1903-1911https://doi.org/10.1210/jc.2014-4077
        • Trimboli P.
        • Castellana M.
        • Sconfienza L.M.
        • et al.
        Efficacy of thermal ablation in benign non-functioning solid thyroid nodule: a systematic review and meta-analysis.
        Endocrine. 2020; 67: 35-43https://doi.org/10.1007/s12020-019-02019-3
        • Cesareo R.
        • Palermo A.
        • Benvenuto D.
        • et al.
        Efficacy of radiofrequency ablation in autonomous functioning thyroid nodules. A systematic review and meta-analysis.
        Rev Endocr Metab Disord. 2019; 20: 37-44https://doi.org/10.1007/s11154-019-09487-y
        • Bennedbaek F.N.
        • Hegedüs L.
        Treatment of recurrent thyroid cysts with ethanol: a randomized double-blind controlled trial.
        J Clin Endocrinol Metab. 2003; 88: 5773-5777https://doi.org/10.1210/jc.2003-031000
        • Valcavi R.
        • Frasoldati A.
        Ultrasound-guided percutaneous ethanol injection therapy in thyroid cystic nodules.
        Endocr Pract. 2004; 10: 269-275
        • Cesareo R.
        • Tabacco G.
        • Naciu A.M.
        • et al.
        Long-term efficacy and safety of percutaneous ethanol injection (PEI) in cystic thyroid nodules: a systematic review and meta-analysis.
        Clin Endocrinol (Oxf). 2021; https://doi.org/10.1111/cen.14530
        • Guglielmi R.
        • Pacella C.M.
        • Bianchini A.
        • et al.
        Percutaneous ethanol injection treatment in benign thyroid lesions: role and efficacy.
        Thyroid. 2004; 14: 125-131https://doi.org/10.1089/105072504322880364
        • Nou E.
        • Kwong N.
        • Alexander L.K.
        • et al.
        Determination of the optimal time interval for repeat evaluation after a benign thyroid nodule aspiration.
        J Clin Endocrinol Metab. 2014; 99: 510-516https://doi.org/10.1210/jc.2013-3160
        • Amit M.
        • Rudnicki Y.
        • Binenbaum Y.
        • et al.
        Defining the outcome of patients with delayed diagnosis of differentiated thyroid cancer.
        Laryngoscope. 2014; 124: 2837-2840https://doi.org/10.1002/lary.24744
        • Jasim S.
        • Baranski T.J.
        • Teefey S.A.
        • et al.
        Investigating the effect of thyroid nodule location on the risk of thyroid cancer.
        Thyroid. 2020; 30: 401-407https://doi.org/10.1089/thy.2019.0478
        • Tuttle R.M.
        • Fagin J.A.
        • Minkowitz G.
        • et al.
        Natural history and tumor volume kinetics of papillary thyroid cancers during active surveillance.
        JAMA Otolaryngol Head Neck Surg. 2017; 143: 1015-1020https://doi.org/10.1001/jamaoto.2017.1442
        • Persichetti A.
        • Di Stasio E.
        • Coccaro C.
        • et al.
        Inter- and intraobserver agreement in the assessment of thyroid nodule ultrasound features and classification systems: a blinded multicenter study.
        Thyroid. 2020; 30: 237-242https://doi.org/10.1089/thy.2019.0360
        • Tessler F.N.
        Thyroid nodules and real estate: location matters.
        Thyroid. 2020; 30: 349-350https://doi.org/10.1089/thy.2020.0090