Advertisement
Review Article| Volume 102, ISSUE 3, P393-412, June 2022

Endobronchial Therapies for Diagnosis, Staging, and Treatment of Lung Cancer

  • Sameer K. Avasarala
    Affiliations
    Division of Pulmonary, Critical Care and Sleep Medicine, University Hospitals – Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Bolwell 6th, Floor, Cleveland, OH 44106, USA
    Search for articles by this author
  • Otis B. Rickman
    Correspondence
    Corresponding author.
    Affiliations
    Division of Allergy, Pulmonary and Critical Care Medicine, Department of Thoracic Surgery, Vanderbilt University Medical Center, T-1218 Medical Center North, 1161 21st Avenue South, Nashville, TN 37232, USA
    Search for articles by this author
Published:April 21, 2022DOI:https://doi.org/10.1016/j.suc.2022.01.004

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Surgical Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • de Koning H.J.
        • van der Aalst C.M.
        • de Jong P.A.
        • et al.
        Reduced lung-cancer mortality with volume CT screening in a randomized trial.
        N Engl J Med. 2020; 382: 503-513
        • Polcz M.E.
        • Maiga A.W.
        • Brown L.B.
        • et al.
        The impact of an interventional pulmonary program on nontherapeutic lung resections.
        J Bronchology Interv Pulmonol. 2019; 26: 287-289
        • Colt H.G.
        • Harrell J.H.
        Therapeutic rigid bronchoscopy allows level of care changes in patients with acute respiratory failure from central airways obstruction.
        Chest. 1997; 112: 202-206
        • Avasarala S.K.
        • Gillaspie E.A.
        • Maldonado F.
        Rigid versus flexible bronchoscopy.
        in: Turner J.J.F. Jain P. Yasufuku K. From thoracic surgery to interventional pulmonology: a clinical guide. Springer International Publishing, Manhattan2021: 1-17
        • Daneshvar C.
        • Falconer W.E.
        • Ahmed M.
        • et al.
        Prevalence and outcome of central airway obstruction in patients with lung cancer.
        BMJ Open Respir Res. 2019; 6: e000429
        • Andolfi M.
        • Potenza R.
        • Capozzi R.
        • et al.
        The role of bronchoscopy in the diagnosis of early lung cancer: a review.
        J Thorac Dis. 2016; 8: 3329-3337
        • Ernst A.
        • Herth F.J.
        Principles and practice of interventional pulmonology.
        Springer Science & Business Media, New York2012
        • Zaric B.
        • Perin B.
        • Stojsic V.
        • et al.
        Relation between vascular patterns visualized by narrow band imaging (NBI) videobronchoscopy and histological type of lung cancer.
        Med Oncol. 2013; 30: 374
        • Zaric B.
        • Becker H.D.
        • Perin B.
        • et al.
        Narrow band imaging videobronchoscopy improves assessment of lung cancer extension and influences therapeutic strategy.
        Jpn J Clin Oncol. 2009; 39: 657-663
        • Feller-Kopman D.
        • Lunn W.
        • Ernst A.
        Autofluorescence bronchoscopy and endobronchial ultrasound: a practical review.
        Ann Thorac Surg. 2005; 80: 2395-2401https://doi.org/10.1016/j.athoracsur.2005.04.084
        • Chen W.
        • Gao X.
        • Tian Q.
        • et al.
        A comparison of autofluorescence bronchoscopy and white light bronchoscopy in detection of lung cancer and preneoplastic lesions: a meta-analysis.
        Lung Cancer. 2011; 73: 183-188
        • Sun J.
        • Garfield D.H.
        • Lam B.
        • et al.
        The value of autofluorescence bronchoscopy combined with white light bronchoscopy compared with white light alone in the diagnosis of intraepithelial neoplasia and invasive lung cancer: a meta-analysis.
        J Thorac Oncol. 2011; 6: 1336-1344
        • Crymes T.
        • Fish R.
        • Smith D.
        Autofluorescence bronchoscopy definition autofluorescence bronchoscopy is a broncho-scopic procedure in which a blue light rather than a white light is employed for illumination, and prema.
        Chest. 2003; 123: 1701
        • Herth F.J.F.
        • Ernst A.
        • Becker H.D.
        Autofluorescence bronchoscopy – A comparison of two systems (LIFE and D-light).
        Respiration. 2003; 70: 395-398
        • Iftikhar I.H.
        • Musani A.I.
        Narrow-band imaging bronchoscopy in the detection of premalignant airway lesions: a meta-analysis of diagnostic test accuracy.
        Ther Adv Respir Dis. 2015; 9: 207-216
        • Huang D.
        • Swanson E.A.
        • Lin C.P.
        • et al.
        Optical coherence tomography.
        Science. 1991; 254: 1178-1181
        • Goorsenberg A.
        • Kalverda K.A.
        • Annema J.
        • et al.
        Advances in optical coherence tomography and confocal laser endomicroscopy in pulmonary diseases.
        Respiration. 2020; 99: 190-205
        • Girard P.
        • Caliandro R.
        • Seguin-Givelet A.
        • et al.
        Sensitivity of cytology specimens from bronchial aspirate or washing during bronchoscopy in the diagnosis of lung malignancies: an update.
        Clin Lung Cancer. 2017; 18: 512-518
        • Rivera M.P.
        • Mehta A.C.
        • Wahidi M.M.
        Establishing the diagnosis of lung cancer: diagnosis and management of lung cancer, 3rd ed: american college of chest physicians evidence-based clinical practice guidelines.
        Chest. 2013; 143: e142S-e165S
        • Soler T.V.
        • Isamitt D.D.
        • Carrasco O.A.
        [Yield of biopsy, brushing and bronchial washing through fiberbronchoscopy in the diagnosis of lung cancer with visible lesions].
        Rev Med Chil. 2004; 132 (Rendimiento de la biopsia, cepillado y lavado bronquial por fibrobroncoscopia en el diagnóstico de cáncer pulmonar con lesiones visibles endoscópicamente): 1198-1203https://doi.org/10.4067/s0034-98872004001000006
        • Gildea T.R.
        • Folch E.E.
        • Khandhar S.J.
        • et al.
        The impact of biopsy tool choice and rapid on-site evaluation on diagnostic accuracy for malignant lesions in the prospective: multicenter navigate study.
        J Bronchology Interv Pulmonol. 2021; 28: 174-183
        • Tanner N.T.
        • Yarmus L.
        • Chen A.
        • et al.
        Standard bronchoscopy with fluoroscopy vs thin bronchoscopy and radial endobronchial ultrasound for biopsy of pulmonary lesions: a multicenter, prospective, randomized trial.
        Chest. 2018; 154: 1035-1043
        • Avasarala S.K.
        • Aravena C.
        • Almeida F.A.
        Convex probe endobronchial ultrasound: historical, contemporary, and cutting-edge applications.
        J Thorac Dis. 2019; 12: 1085-1099
        • Ali M.S.
        • Trick W.
        • Mba B.I.
        • et al.
        Radial endobronchial ultrasound for the diagnosis of peripheral pulmonary lesions: a systematic review and meta-analysis.
        Respirology. 2017; 22: 443-453
        • Asano F.
        • Matsuno Y.
        • Tsuzuku A.
        • et al.
        Diagnosis of peripheral pulmonary lesions using a bronchoscope insertion guidance system combined with endobronchial ultrasonography with a guide sheath.
        Lung Cancer. 2008; 60: 366-373
        • Qian K.
        • Krimsky W.S.
        • Sarkar S.A.
        • et al.
        Efficiency of electromagnetic navigation bronchoscopy and virtual bronchoscopic navigation.
        Ann Thorac Surg. 2020; 109: 1731-1740
        • Cicenia J.
        • Avasarala S.K.
        • Gildea T.R.
        Navigational bronchoscopy: a guide through history, current use, and developing technology.
        J Thorac Dis. 2020; 12: 3263-3271
        • Ost D.E.
        • Ernst A.
        • Lei X.
        • et al.
        Diagnostic yield and complications of bronchoscopy for peripheral lung lesions. results of the AQuIRE registry.
        Am J Respir Crit Care Med. 2016; 193: 68-77
        • Folch E.E.
        • Pritchett M.A.
        • Nead M.A.
        • et al.
        Electromagnetic navigation bronchoscopy for peripheral pulmonary lesions: one-year results of the prospective, multicenter navigate study.
        J Thorac Oncol. 2019; 14: 445-458
        • Katsis J.
        • Roller L.
        • Aboudara M.
        • et al.
        Diagnostic yield of digital tomosynthesis-assisted navigational bronchoscopy for indeterminate lung nodules.
        J Bronchology Interv Pulmonol. 2021; 28: 255-261
        • Aboudara M.
        • Roller L.
        • Rickman O.
        • et al.
        Improved diagnostic yield for lung nodules with digital tomosynthesis-corrected navigational bronchoscopy: Initial experience with a novel adjunct.
        Respirology. 2020; 25: 206-213
        • Avasarala S.K.
        • Roller L.
        • Katsis J.
        • et al.
        Sight unseen: diagnostic yield and safety outcomes of a novel multimodality navigation bronchoscopy platform with real-time target acquisition.
        Respiration. 2021; 101: 166-173
        • Rojas-Solano J.R.
        • Ugalde-Gamboa L.
        • Machuzak M.
        Robotic bronchoscopy for diagnosis of suspected lung cancer: a feasibility study.
        J Bronchology Interv Pulmonol. 2018; 25: 168-175
        • Chen A.C.
        • Pastis N.J.
        • Machuzak M.S.
        • et al.
        Accuracy of a robotic endoscopic system in cadaver models with simulated tumor targets: access study.
        Respiration. 2020; 99: 56-61
        • Chaddha U.
        • Kovacs S.P.
        • Manley C.
        • et al.
        Robot-assisted bronchoscopy for pulmonary lesion diagnosis: results from the initial multicenter experience.
        BMC Pulm Med. 2019; 19: 243
        • Chen A.C.
        • Pastis Jr., N.J.
        • Mahajan A.K.
        • et al.
        Robotic bronchoscopy for peripheral pulmonary lesions: a multicenter pilot and feasibility study (BENEFIT).
        Chest. 2021; 159: 845-852
        • Fielding D.I.K.
        • Bashirzadeh F.
        • Son J.H.
        • et al.
        First human use of a new robotic-assisted fiber optic sensing navigation system for small peripheral pulmonary nodules.
        Respiration. 2019; 98: 142-150https://doi.org/10.1159/000498951
        • Yarmus L.
        • Akulian J.
        • Wahidi M.
        • et al.
        A Prospective randomized comparative study of three guided bronchoscopic approaches for investigating pulmonary nodules: the PRECISION-1 study.
        Chest. 2019; https://doi.org/10.1016/j.chest.2019.10.016
        • Folch E.E.
        • Pritchett M.
        • Reisenauer J.
        • et al.
        A prospective, multi-center evaluation of the clinical utility of the ion endoluminal system -experience using a robotic-assisted bronchoscope system with shape-sensing technology. A110 advances in interventional pulmonology.
        American Thoracic Society. 2020; 201 (American Thoracic Society International Conference Abstracts): A2719
        • Kalchiem-Dekel O.
        • Connolly J.G.
        • Lin I.H.
        • et al.
        Shape-sensing robotic-assisted bronchoscopy in the diagnosis of pulmonary parenchymal lesions.
        Chest. 2021; https://doi.org/10.1016/j.chest.2021.07.2169
        • Benn B.S.
        • Romero A.O.
        • Lum M.
        • et al.
        Robotic-Assisted navigation bronchoscopy as a paradigm shift in peripheral lung access.
        Lung. 2021; 199: 177-186
        • Christiansen I.S.
        • Ahmad K.
        • Bodtger U.
        • et al.
        EUS-B for suspected left adrenal metastasis in lung cancer.
        J Thorac Dis. 2020; 12: 258-263
        • Crombag L.M.
        • Annema J.T.
        Left adrenal gland analysis in lung cancer patients using the endobronchial ultrasound scope: a feasibility trial.
        Respiration. 2016; 91: 235-240
        • Detterbeck F.C.
        • Lewis S.Z.
        • Diekemper R.
        • et al.
        Executive summary: diagnosis and management of lung cancer, 3rd ed: american college of chest physicians evidence-based clinical practice guidelines.
        Chest. 2013; 143: 7s-37s
        • De Leyn P.
        • Dooms C.
        • Kuzdzal J.
        • et al.
        Revised ESTS guidelines for preoperative mediastinal lymph node staging for non-small-cell lung cancer.
        Eur J Cardiothorac Surg. 2014; 45: 787-798
        • Yasufuku K.
        • Nakajima T.
        • Motoori K.
        • et al.
        Comparison of endobronchial ultrasound, positron emission tomography, and CT for lymph node staging of lung cancer.
        Chest. 2006; 130: 710-718
        • Zhao H.
        • Xie Z.
        • Zhou Z.L.
        • et al.
        Diagnostic value of endobronchial ultrasound-guided transbronchial needle aspiration in intrapulmonary lesions.
        Chin Med J (Engl). 2013; 126: 4312-4315
        • Verma A.
        • Jeon K.
        • Koh W.J.
        • et al.
        Endobronchial ultrasound-guided transbronchial needle aspiration for the diagnosis of central lung parenchymal lesions.
        Yonsei Med J. 2013; 54: 672-678
        • Nakajima T.
        • Yasufuku K.
        • Fujiwara T.
        • et al.
        Endobronchial ultrasound-guided transbronchial needle aspiration for the diagnosis of intrapulmonary lesions.
        J Thorac Oncol. 2008; 3: 985-988
        • Hohenforst-Schmidt W.
        • Zarogoulidis P.
        • Darwiche K.
        • et al.
        Intratumoral chemotherapy for lung cancer: re-challenge current targeted therapies.
        Drug Des Devel Ther. 2013; 7: 571-583
        • Akhtar N.
        • Ansar F.
        • Baig M.S.
        • et al.
        Airway fires during surgery: management and prevention.
        J Anaesthesiol Clin Pharmacol. 2016; 32: 109-111
        • Chaddha U.
        • Hogarth D.K.
        • Murgu S.
        Bronchoscopic ablative therapies for malignant central airway obstruction and peripheral lung tumors.
        Ann Am Thorac Soc. 2019; 16: 1220-1229
        • Miller R.J.
        • Murgu S.D.
        Bronchoscopic resection of an exophytic endoluminal tracheal mass.
        Ann Am Thorac Soc. 2013; 10: 697-700
        • Cavaliere S.
        • Foccoli P.
        • Farina P.L.
        Nd:YAG laser bronchoscopy. A five-year experience with 1,396 applications in 1,000 patients.
        Chest. 1988; 94: 15-21
        • Mahajan A.K.
        • Ibrahim O.
        • Perez R.
        • et al.
        Electrosurgical and laser therapy tools for the treatment of malignant central airway obstructions.
        Chest. 2020; 157: 446-453
        • Tremblay A.
        • Marquette C.H.
        Endobronchial electrocautery and argon plasma coagulation: a practical approach.
        Can Respir J. 2004; 11: 305-310
        • Folch E.E.
        • Oberg C.L.
        • Mehta A.C.
        • et al.
        Argon plasma coagulation: elucidation of the mechanism of gas embolism.
        Respiration. 2021; 100: 1-5
        • Mazur P.
        The role of intracellular freezing in the death of cells cooled at supraoptimal rates.
        Cryobiology. 1977; 14: 251-272
        • DiBardino D.M.
        • Lanfranco A.R.
        • Haas A.R.
        Bronchoscopic cryotherapy. Clinical applications of the cryoprobe, cryospray, and cryoadhesion.
        Ann Am Thorac Soc. 2016; 13: 1405-1415
        • Browning R.
        • Turner Jr., J.F.
        • Parrish S.
        Spray cryotherapy (SCT): institutional evolution of techniques and clinical practice from early experience in the treatment of malignant airway disease.
        J Thorac Dis. 2015; 7: S405-S414
        • O'Connor J.P.
        • Hanley B.M.
        • Mulcahey T.I.
        • et al.
        N(2) gas egress from patients' airways during LN(2) spray cryotherapy.
        Med Eng Phys. 2017; 44: 63-72
        • Administration USFD
        ERBECRYO 2 cryosurgical unit and accessories: ERBECRYO 2 cryosurgical unit; erbe flexible cryoprobe.
        U.S. Food & Drug Administration, Silver Spring, Maryland2020 (Available at:) (Accessed 05/26/2020)
        • Mahmood K.
        • Wahidi M.M.
        Ablative therapies for central airway obstruction.
        Semin Respir Crit Care Med. 2014; 35: 681-692
        • Schumann C.
        • Hetzel M.
        • Babiak A.J.
        • et al.
        Endobronchial tumor debulking with a flexible cryoprobe for immediate treatment of malignant stenosis.
        J Thorac Cardiovasc Surg. 2010; 139: 997-1000
        • Stewart A.
        • Parashar B.
        • Patel M.
        • et al.
        American brachytherapy society consensus guidelines for thoracic brachytherapy for lung cancer.
        Brachytherapy. 2016; 15: 1-11
        • Qiu B.
        • Jiang P.
        • Ji Z.
        • et al.
        Brachytherapy for lung cancer.
        Brachytherapy. 2021; 20: 454-466
        • Aumont-le Guilcher M.
        • Prevost B.
        • Sunyach M.P.
        • et al.
        High-dose-rate brachytherapy for non-small-cell lung carcinoma: a retrospective study of 226 patients.
        Int J Radiat Oncol Biol Phys. 2011; 79: 1112-1116
        • Soror T.
        • Kovács G.
        • Fürschke V.
        • et al.
        Salvage treatment with sole high-dose-rate endobronchial interventional radiotherapy (brachytherapy) for isolated endobronchial tumor recurrence in non-small-cell lung cancer patients: a 20-year experience.
        Brachytherapy. 2019; 18: 727-732
        • Reveiz L.
        • Rueda J.R.
        • Cardona A.F.
        Palliative endobronchial brachytherapy for non-small cell lung cancer.
        Cochrane Database Syst Rev. 2012; 12: Cd004284
        • Ernst A.
        • Herth F.J.F.
        Principles and Practice of interventional pulmonology. Text.
        1st edition. Springer, New York : Imprint2013: 732
        • Nag S.
        • Kelly J.F.
        • Horton J.L.
        • et al.
        Brachytherapy for carcinoma of the lung.
        Oncology (Williston Park). 2001; 15: 371-381
        • Vergnon J.M.
        • Huber R.M.
        • Moghissi K.
        Place of cryotherapy, brachytherapy and photodynamic therapy in therapeutic bronchoscopy of lung cancers.
        Eur Respir J. 2006; 28: 200-218
        • Allison R.R.
        • Downie G.H.
        • Cuenca R.
        • et al.
        Photosensitizers in clinical PDT.
        Photodiagnosis Photodynamic Ther. 2004; 1: 27-42https://doi.org/10.1016/S1572-1000(04)00007-9
        • Kidane B.
        • Hirpara D.
        • Yasufuku K.
        Photodynamic therapy in non-gastrointestinal thoracic malignancies.
        Int J Mol Sci. 2016; 17: 135
        • Mang T.S.
        Lasers and light sources for PDT: past, present and future.
        Photodiagnosis Photodynamic Ther. 2004; 1: 43-48
        • Pereira S.P.
        • Ayaru L.
        • Ackroyd R.
        • et al.
        The pharmacokinetics and safety of porfimer after repeated administration 30-45 days apart to patients undergoing photodynamic therapy.
        Aliment Pharmacol Ther. 2010; 32: 821-827
      1. Porfimer sodium.
        Drug Bank Online. 2021; (Available at:) (Accessed 09/08/2021)
        • Avasarala S.K.
        • Freitag L.
        • Mehta A.C.
        Metallic endobronchial stents: a contemporary resurrection.
        Chest. 2019; 155: 1246-1259
        • Harms W.
        • Krempien R.
        • Grehn C.
        • et al.
        Electromagnetically navigated brachytherapy as a new treatment option for peripheral pulmonary tumors.
        Strahlenther Onkol. 2006; 182: 108-111
        • Olive G.
        • Yung R.
        • Marshall H.
        • et al.
        Alternative methods for local ablation-interventional pulmonology: a narrative review.
        Transl Lung Cancer Res. 2021; 10: 3432-3445
        • Yuan H.B.
        • Wang X.Y.
        • Sun J.Y.
        • et al.
        Flexible bronchoscopy-guided microwave ablation in peripheral porcine lung: a new minimally-invasive ablation.
        Transl Lung Cancer Res. 2019; 8: 787-796
        • Sebek J.
        • Kramer S.
        • Rocha R.
        • et al.
        Bronchoscopically delivered microwave ablation in an in vivo porcine lung model.
        ERJ Open Res. 2020; 6https://doi.org/10.1183/23120541.00146-2020
        • Maxwell A.W.P.
        • Park W.K.C.
        • Baird G.L.
        • et al.
        Effects of a thermal accelerant gel on microwave ablation zone volumes in lung: a porcine study.
        Radiology. 2019; 291: 504-510
        • Chan J.W.Y.
        • Lau R.W.H.
        • Ngai J.C.L.
        • et al.
        Transbronchial microwave ablation of lung nodules with electromagnetic navigation bronchoscopy guidance-a novel technique and initial experience with 30 cases.
        Transl Lung Cancer Res. 2021; 10: 1608-1622
        • Bi N.
        • Shedden K.
        • Zheng X.
        • et al.
        Comparison of the effectiveness of radiofrequency ablation with stereotactic body radiation therapy in inoperable stage i non-small cell lung cancer: a systemic review and pooled analysis.
        Int J Radiat Oncol Biol Phys. 2016; 95: 1378-1390
        • Musani A.I.
        • Veir J.K.
        • Huang Z.
        • et al.
        Photodynamic therapy via navigational bronchoscopy for peripheral lung cancer in dogs.
        Lasers Surg Med. 2018; 50: 483-490
        • Chen K.C.
        • Lee J.M.
        Photodynamic therapeutic ablation for peripheral pulmonary malignancy via electromagnetic navigation bronchoscopy localization in a hybrid operating room (OR): a pioneering study.
        J Thorac Dis. 2018; 10: S725-S730
        • Usuda J.
        Photodynamic therapy for peripheral lung cancers using composite-type optical fiberscope of 1.0 mm in diameter. B80-J interventional pulmonology in thoracic oncology.
        Am Thorac Soc. 2017; 195: A7637
        • Ferguson J.S.
        • Henne E.
        Bronchoscopically Delivered thermal vapor ablation of human lung lesions.
        J Bronchology Interv Pulmonol. 2019; 26: 108-113