Advertisement

Genomic Profiling and Liquid Biopsies for Breast Cancer

  • Author Footnotes
    1 Present address: 600 Highland Avenue, MC 7375, Madison, WI 53792.
    Clayton T. Marcinak
    Footnotes
    1 Present address: 600 Highland Avenue, MC 7375, Madison, WI 53792.
    Affiliations
    Department of Surgery, University of Wisconsin–Madison, Madison, WI, USA

    Center for Human Genomics and Precision Medicine, University of Wisconsin–Madison, Madison, WI, USA
    Search for articles by this author
  • Author Footnotes
    2 Present address: 1111 Highland Avenue, WIMR West Wedge 2770, Madison, WI 53705.
    Muhammed Murtaza
    Footnotes
    2 Present address: 1111 Highland Avenue, WIMR West Wedge 2770, Madison, WI 53705.
    Affiliations
    Department of Surgery, University of Wisconsin–Madison, Madison, WI, USA

    Center for Human Genomics and Precision Medicine, University of Wisconsin–Madison, Madison, WI, USA
    Search for articles by this author
  • Lee G. Wilke
    Correspondence
    Corresponding author. 600 Highland Avenue, K4/624, Madison, WI 53792.
    Affiliations
    Department of Surgery, University of Wisconsin–Madison, Madison, WI, USA

    University of Wisconsin Carbone Cancer Center, Madison, WI, USA
    Search for articles by this author
  • Author Footnotes
    1 Present address: 600 Highland Avenue, MC 7375, Madison, WI 53792.
    2 Present address: 1111 Highland Avenue, WIMR West Wedge 2770, Madison, WI 53705.
Published:October 17, 2022DOI:https://doi.org/10.1016/j.suc.2022.08.003

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Surgical Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sjöblom T.
        • Jones S.
        • Wood L.D.
        • et al.
        The Consensus Coding Sequences of Human Breast and Colorectal Cancers.
        Science. 2006; 314: 268-274
        • Cazier J.B.
        • Tomlinson I.
        General lessons from large-scale studies to identify human cancer predisposition genes.
        J Pathol. 2010; 220: 255-262
      1. Adjuvant Chemotherapy for Breast Cancer.
        JAMA. 1985; 254: 3461-3463
        • Fisher B.
        • Redmond C.
        • Brown A.
        • et al.
        Treatment of Primary Breast Cancer with Chemotherapy and Tamoxifen.
        N Engl J Med. 1981; 305: 1-6
        • Fisher B.
        • Costantino J.
        • Redmond C.
        • et al.
        A Randomized Clinical Trial Evaluating Tamoxifen in the Treatment of Patients with Node-Negative Breast Cancer Who Have Estrogen-Receptor–Positive Tumors.
        N Engl J Med. 1989; 320: 479-484
        • Baselga J.
        • Norton L.
        • Albanell J.
        • et al.
        Recombinant Humanized Anti-HER2 Antibody (Herceptin™) Enhances the Antitumor Activity of Paclitaxel and Doxorubicin against HER2/neu Overexpressing Human Breast Cancer Xenografts1.
        Cancer Res. 1998; 58: 2825-2831
        • Cobleigh M.A.
        • Vogel C.L.
        • Tripathy D.
        • et al.
        Multinational Study of the Efficacy and Safety of Humanized Anti-HER2 Monoclonal Antibody in Women Who Have HER2-Overexpressing Metastatic Breast Cancer That Has Progressed After Chemotherapy for Metastatic Disease.
        J Clin Oncol. 1999; 17: 2639
        • Perou C.M.
        • Sørlie T.
        • Eisen M.B.
        • et al.
        Molecular portraits of human breast tumours.
        Nature. 2000; 406: 747-752
        • Paik S.
        • Shak S.
        • Tang G.
        • et al.
        A Multigene Assay to Predict Recurrence of Tamoxifen-Treated, Node-Negative Breast Cancer.
        N Engl J Med. 2004; 351: 2817-2826
        • Giuliano A.E.
        • Connolly J.L.
        • Edge S.B.
        • et al.
        Breast Cancer-Major changes in the American Joint Committee on Cancer eighth edition cancer staging manual.
        CA Cancer J Clin. 2017; 67: 290-303
        • van 't Veer L.J.
        • Dai H.
        • van de Vijver M.J.
        • et al.
        Gene expression profiling predicts clinical outcome of breast cancer.
        Nature. 2002; 415: 530-536
        • van de Vijver M.J.
        • He Y.D.
        • van 't Veer L.J.
        • et al.
        A Gene-Expression Signature as a Predictor of Survival in Breast Cancer.
        N Engl J Med. 2002; 347: 1999-2009
        • Nielsen T.
        • Wallden B.
        • Schaper C.
        • et al.
        Analytical validation of the PAM50-based Prosigna Breast Cancer Prognostic Gene Signature Assay and nCounter Analysis System using formalin-fixed paraffin-embedded breast tumor specimens.
        BMC Cancer. 2014; 14: 177
        • Wallden B.
        • Storhoff J.
        • Nielsen T.
        • et al.
        Development and verification of the PAM50-based Prosigna breast cancer gene signature assay.
        BMC Med Genomics. 2015; 8: 54
        • Parker J.S.
        • Mullins M.
        • Cheang M.C.
        • et al.
        Supervised risk predictor of breast cancer based on intrinsic subtypes.
        J Clin Oncol. 2009; 27: 1160-1167
        • Filipits M.
        • Rudas M.
        • Jakesz R.
        • et al.
        A new molecular predictor of distant recurrence in ER-positive, HER2-negative breast cancer adds independent information to conventional clinical risk factors.
        Clin Cancer Res. 2011; 17: 6012-6020
        • Sparano J.A.
        • Gray R.J.
        • Makower D.F.
        • et al.
        Prospective Validation of a 21-Gene Expression Assay in Breast Cancer.
        N Engl J Med. 2015; 373: 2005-2014
        • Sparano J.A.
        • Gray R.J.
        • Makower D.F.
        • et al.
        Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer.
        N Engl J Med. 2018; 379: 111-121
        • Sparano J.A.
        • Gray R.J.
        • Makower D.F.
        • et al.
        Clinical Outcomes in Early Breast Cancer With a High 21-Gene Recurrence Score of 26 to 100 Assigned to Adjuvant Chemotherapy Plus Endocrine Therapy: A Secondary Analysis of the TAILORx Randomized Clinical Trial.
        JAMA Oncol. 2020; 6: 367-374
        • Kalinsky K.
        • Barlow W.E.
        • Gralow J.R.
        • et al.
        21-Gene Assay to Inform Chemotherapy Benefit in Node-Positive Breast Cancer.
        N Engl J Med. 2021; 385: 2336-2347
      2. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®); Guideline Breast Cancer 4.2022. National Comprehensive Cancer Network, Inc. 2022.

        • Cardoso F.
        • van't Veer L.J.
        • Bogaerts J.
        • et al.
        70-Gene Signature as an Aid to Treatment Decisions in Early-Stage Breast Cancer.
        N Engl J Med. 2016; 375: 717-729
        • Piccart M.
        • van 't Veer L.J.
        • Poncet C.
        • et al.
        70-gene signature as an aid for treatment decisions in early breast cancer: updated results of the phase 3 randomised MINDACT trial with an exploratory analysis by age.
        Lancet Oncol. 2021; 22: 476-488
        • Ravdin P.M.
        • Siminoff L.A.
        • Davis G.J.
        • et al.
        Computer Program to Assist in Making Decisions About Adjuvant Therapy for Women With Early Breast Cancer.
        J Clin Oncol. 2001; 19: 980-991
        • Metzker M.L.
        Sequencing technologies - the next generation.
        Nat Rev Genet. 2010; 11: 31-46
        • Ellis M.J.
        • Ding L.
        • Shen D.
        • et al.
        Whole-genome analysis informs breast cancer response to aromatase inhibition.
        Nature. 2012; 486: 353-360
        • Bose R.
        • Kavuri S.M.
        • Searleman A.C.
        • et al.
        Activating HER2 mutations in HER2 gene amplification negative breast cancer.
        Cancer Discov. 2013; 3: 224-237
        • Reinert T.
        • Saad E.D.
        • Barrios C.H.
        • et al.
        Clinical Implications of ESR1 Mutations in Hormone Receptor-Positive Advanced Breast Cancer.
        Front Oncol. 2017; 7: 26
        • Gurda G.T.
        • Ambros T.
        • Nikiforova M.N.
        • et al.
        Characterizing Molecular Variants and Clinical Utilization of Next-generation Sequencing in Advanced Breast Cancer.
        Appl Immunohistochem Mol Morphol. 2017; 25: 392-398
        • Larson K.L.
        • Huang B.
        • Weiss H.L.
        • et al.
        Clinical Outcomes of Molecular Tumor Boards: A Systematic Review.
        JCO Precis Oncol. 2021; (5doi:)https://doi.org/10.1200/PO.20.00495
        • Pezo R.C.
        • Chen T.W.
        • Berman H.K.
        • et al.
        Impact of multi-gene mutational profiling on clinical trial outcomes in metastatic breast cancer.
        Breast Cancer Res Treat. 2018; 168: 159-168
        • Stockley T.L.
        • Oza A.M.
        • Berman H.K.
        • et al.
        Molecular profiling of advanced solid tumors and patient outcomes with genotype-matched clinical trials: the Princess Margaret IMPACT/COMPACT trial.
        Genome Med. 2016; 8: 109
        • Frampton G.M.
        • Fichtenholtz A.
        • Otto G.A.
        • et al.
        Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing.
        Nat Biotechnol. 2013; 31: 1023-1031
        • Kawaji H.
        • Kubo M.
        • Yamashita N.
        • et al.
        Comprehensive molecular profiling broadens treatment options for breast cancer patients.
        Cancer Med. 2021; 10: 529-539
        • Smith N.G.
        • Gyanchandani R.
        • Shah O.S.
        • et al.
        Targeted mutation detection in breast cancer using MammaSeq.
        Breast Cancer Res. 2019; 21: 22
        • Yates L.R.
        • Gerstung M.
        • Knappskog S.
        • et al.
        Subclonal diversification of primary breast cancer revealed by multiregion sequencing.
        Nat Med. 2015; 21: 751-759
        • Do H.
        • Dobrovic A.
        Sequence artifacts in DNA from formalin-fixed tissues: causes and strategies for minimization.
        Clin Chem. 2015; 61: 64-71
        • Zardavas D.
        • Piccart-Gebhart M.
        Clinical trials of precision medicine through molecular profiling: focus on breast cancer.
        Am Soc Clin Oncol Educ Book. 2015; 35: e183-e190
        • Kagan M.
        • Howard D.
        • Bendele T.
        • et al.
        A sample preparation and analysis system for identification of circulating tumor cells.
        J Clin Ligand Assay. 2002; 25: 104-110
        • Andree K.C.
        • van Dalum G.
        • Terstappen L.W.
        Challenges in circulating tumor cell detection by the CellSearch system.
        Mol Oncol Mar. 2016; 10: 395-407
        • Cristofanilli M.
        • Budd G.T.
        • Ellis M.J.
        • et al.
        Circulating Tumor Cells, Disease Progression, and Survival in Metastatic Breast Cancer.
        N Engl J Med. 2004; 351: 781-791
        • Cristofanilli M.
        • Hayes D.F.
        • Budd G.T.
        • et al.
        Circulating Tumor Cells: A Novel Prognostic Factor for Newly Diagnosed Metastatic Breast Cancer.
        J Clin Oncol. 2005; 23: 1420-1430
        • Bidard F.-C.
        • Peeters D.J.
        • Fehm T.
        • et al.
        Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data.
        Lancet Oncol. 2014; 15: 406-414
        • Magbanua M.J.M.
        • Hendrix L.H.
        • Hyslop T.
        • et al.
        Serial Analysis of Circulating Tumor Cells in Metastatic Breast Cancer Receiving First-Line Chemotherapy.
        J Natl Cancer Inst. 2021; 113: 443-452
        • Coumans F.A.W.
        • Siesling S.
        • Terstappen L.W.M.M.
        Detection of cancer before distant metastasis.
        BMC Cancer. 2013; 13: 283
        • Wong F.C.K.
        • Lo Y.M.D.
        Prenatal Diagnosis Innovation: Genome Sequencing of Maternal Plasma.
        Annu Rev Med. 2016; 67: 419-432
        • Wan J.C.M.
        • Massie C.
        • Garcia-Corbacho J.
        • et al.
        Liquid biopsies come of age: towards implementation of circulating tumour DNA.
        Nat Rev Cancer. 2017; 17: 223-238
        • Yao W.
        • Mei C.
        • Nan X.
        • et al.
        Evaluation and comparison of in vitro degradation kinetics of DNA in serum, urine and saliva: A qualitative study.
        Gene. 2016; 590: 142-148
        • Murtaza M.
        • Dawson S.J.
        • Pogrebniak K.
        • et al.
        Multifocal clonal evolution characterized using circulating tumour DNA in a case of metastatic breast cancer.
        Nat Commun. 2015; 6: 8760
        • Coto-Llerena M.
        • Benjak A.
        • Gallon J.
        • et al.
        Circulating Cell-Free DNA Captures the Intratumor Heterogeneity in Multinodular Hepatocellular Carcinoma.
        JCO Precis Oncol. 2022; 6: e2100335
        • Garcia-Murillas I.
        • Schiavon G.
        • Weigelt B.
        • et al.
        Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer.
        Sci Transl Med. 2015; 7: 302ra133
        • Abbosh C.
        • Birkbak N.J.
        • Wilson G.A.
        • et al.
        Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.
        Nature. 2017; 545: 446-451
        • Chan H.T.
        • Nagayama S.
        • Chin Y.M.
        • et al.
        Clinical significance of clonal hematopoiesis in the interpretation of blood liquid biopsy.
        Mol Oncol. 2020; 14: 1719-1730
        • Cohen J.D.
        • Li L.
        • Wang Y.
        • et al.
        Detection and localization of surgically resectable cancers with a multi-analyte blood test.
        Science. 2018; 359: 926-930
        • Liu M.C.
        • Oxnard G.R.
        • Klein E.A.
        • et al.
        Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA.
        Ann Oncol. 2020; 31: 745-759
        • Siejka-Zielińska P.
        • Cheng J.
        • Jackson F.
        • et al.
        Cell-free DNA TAPS provides multimodal information for early cancer detection.
        Sci Adv. 2021; 7: eabh0534
        • Cristiano S.
        • Leal A.
        • Phallen J.
        • et al.
        Genome-wide cell-free DNA fragmentation in patients with cancer.
        Nature. 2019; 570: 385-389
        • Chen Y.H.
        • Hancock B.A.
        • Solzak J.P.
        • et al.
        Next-generation sequencing of circulating tumor DNA to predict recurrence in triple-negative breast cancer patients with residual disease after neoadjuvant chemotherapy.
        NPJ Breast Cancer. 2017; 3: 24
        • Garcia-Murillas I.
        • Chopra N.
        • Comino-Mendez I.
        • et al.
        Assessment of Molecular Relapse Detection in Early-Stage Breast Cancer.
        JAMA Oncol. 2019; 5: 1473-1478
        • McDonald B.R.
        • Contente-Cuomo T.
        • Sammut S.-J.
        • et al.
        Personalized circulating tumor DNA analysis to detect residual disease after neoadjuvant therapy in breast cancer.
        Sci Transl Med. 2019; 11https://doi.org/10.1126/scitranslmed.aax7392